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LETTER TO THE EDITOR 

Origin magnetisation distribution of the site-diluted Ising 
model on a rooted Cayley tree 

B M Mulder and C Papatriantafillou 
Institute of Materials Science, NRCPS Demokritos, 15310 Aghia Paraskevi, Attiki, Greece 

Received 14 June 1989 

Abstract. A stochastic iterative technique is used to obtain the origin magnetisation 
distribution of the site-diluted k ing  ferromagnet on  a rooted Cayley tree with coordination 
number z = 3. This distribution shows marked morphological changes with temperature, 
crossing over from a broad distribution near the ferromagnetic phase boundary to a highly 
structured shape at lower temperatures. The large-scale structure of the intermediate- and 
low-temperature distributions-a superposition of similarly shaped but scaled peaks-can 
be understood on the basis of the contribitions of clusters distinguished by their structure 
close to the origin. 

The site-diluted Ising model as a paradigm for diluted magnets in general has already 
been studied extensively (for a review see Stinchcombe 1981). On the Bethe lattice 
(the infinite isotropic Cayley tree) the critical behaviour of the model can be treated 
exactly (Young 1976). Up to now, however, little attention has been given to the 
properties of the local magnetisation distribution of the model. This is in contrast to 
the recent surge of interest in these distributions in the context of spin-glass models 
on the Bethe lattice (Morita 1984, Chayes et a1 1986, Katsubara 1987, Carlson er a1 
1988, de Oliviera 1988). In this letter we present some first results on the magnetisation 
distribution for the origin site of a rooted Cayley tree. Due to the statistical indepen- 
dence of the branches of a Bethe lattice with nearest-neighbour interactions when the 
state of the origin spin is fixed, our results can be easily integrated to obtain the 
behaviour of the fully isotropic lattice. The L-level rooted tree is recursively generated 
by connecting U (connectivity= z - 1) (L- 1)-level trees at a vertex and appending a 
bond (see figure 1) starting from the one-level tree taken to be a single bond. In the 
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Figure 1. Recursive construction of the rooted Cayley lattice. 
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case discussed here ( (T = 2) one derives the following recursion equation for the random 
origin magnetisations mL: 

where t = tanh(PJ) is the usual Ising model thermal parameter and the are identically 
and independently distributed site occupation variables taking on the value E = 1 with 
probability p and E = 0 with probability 1 - p .  From here on we will assume boundary 
conditions chosen such that m1 has a distribution supported on the interval [0,1] of 
positive magnetisations. Since the magnetisation of an unoccupied site is identically 
zero it suffices to consider the conditional distribution 

t,hL(m) dm = Prob(mLE [m,  m +dm] I E L  = 1) .  (2) 
The limiting distribution + obtained as L-+ 00 will satisfy the integral equation 

From the 8 constraint in the first term of (3) it is clear that m is bounded above by 
the largest positive root of 

which is just the magnetisation of the undiluted case, the critical coupling t,( 1 )  = 4, 
providing a bound on the transition point t,( p )  for the diluted case. In the following 
we will restrict ourselves to the regime t 2 t,( 1 )  and introduce the scaled magnetisations 
p = m/ m, . Furthermore, anticipating the trivial contribution of the finite clusters, we 
will look for solutions of the form + ( p )  = ( 1  - Q ) + ( p ) +  QS(p). Insertion in (3) yields 
for Q: 

which indeed is the probability that the origin belongs to a finite cluster (see, e.g., 
Essam 1980). In view of ( 5 )  we expect non-trivial distributions only for p larger than 
the percolation threshold p c  = t and we will leave this condition understood in the 
following. We are left with the equation for 4 :  
+ ( p )  = U 1 dp' ' )  4 ( p ( ' ) ) a ( p  - t p ( ' ) )  

(6) 
where U = 2 (  1 - p )  is the probability that the infinite cluster to which the origin belongs 
does not develop a side branch at the first site connected to it. One checks that the 
paramagnetic solution c#~~(pL) = 8 ( p )  solves (6) for any t. Inserting a distribution into 
the right-hand side which is non-zero only in a small positive neighbourhood of zero, 
one finds that a solution with non-zero first moment will become stable for t > t,( p )  = 
1/2p,  which identifies the well known phase boundary of the model. The ground-state 
solution at t = 1 is also readily obtained: 4 ' ( p )  = S(p - 1 )  implying an average magneti- 
sation m = 1 - Q which is, as expected, equal to the fraction of sites in the infinite 
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cluster connected to the origin. In order to solve (6) for arbitrary values of t in the 
ordered phase we implement the following iterative scheme. In the ith generation we 
have X magnetisations { ~ ( ~ ) [ n ]  I n = 1,2,  . . . , X } .  The i +  l th  generation is created by 
the following process: 

with probability U 

n = 1,2,  . . . , X n’, n” randomly chosen from { 1 , 2 , .  . . , X } .  

Physically speaking, this process can be interpreted as the recursive growth of X 
realisations of systems belonging to the quenched ensemble of configurations that have 
a cluster connecting the origin with the surface of the tree. The index i labels the level 
of the roots created after the ith iteration. In order to obtain the distribution of 
magnetisations, the interval [0,1] is divided into M subintervals and the number of 
magnetisations falling into every subinterval is counted. In practice the starting 
distribution was chosen uniform on [0, 11. The system was then allowed to equilibrate 
for a number Neq of generations; the value of the average magnetisation m was used 
to monitor the equilibration. Subsequently a measurement was performed by averaging 
the distribution over N,,, generations. In the examples below we chose X = 215, M = 28, 
Neq = 30 and N,,, = 50 except where noted. The system we consider has site occupation 
probability p = 0.75. Figure 2 shows the distribution close to the phase boundary 
( t ,  = 3) at t = 0.675; a broad single-peaked structure. At t = 0.825 (i.e. at lower tem- 
perature) we find the highly structured distribution shown in figure 3; an array of 
peaks that apart from amplitude and width appear to share a common shape. Figure 
4 presents the part of the distribution containing the two most prominent peaks obtained 
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Figure 2. Distribution of the reduced magnetisation I.L for p = 0.75 at r = 0.675. 
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Figure 3. Distribution of the reduced magnetisation p for p = 0.75 at t = 0.825. Dotted 
lines represent predicted locations of cutoffs. 
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Figure 4. Detail of the distribution at t = 0 . 8 2 5  obtained from a higher-resolution 
calculation. 
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from a higher-resolution calculation at the same temperature ( X  = 217, M = 21°, N eq = 
50, N,,, = 100) clearly exhibiting this shape similarity. In order to explain the multiple- 
peak structure of the distribution, consider the contribution of the class of clusters %'" 
being all the clusters that develop their first side branch at a site n levels up from the 
origin. The maximum contribution to the scaled magnetisation from this class- 
pg&comes from the zero-probability cluster that is fully occupied from the branching 
site upwards. From the recursive process (7) one easily deduces that pg:, = t"-' .  The 
arrows in figure 3 show the location of these predicted cutoffs which indeed coincide 
with the sharp fall-off of the observed peaks. Since the structures of the clusters beyond 
the first branching point are identical for all %'n regardless of n, this analysis also 
supplies a heuristic for the observed shape similarity of the peaks. Moreover one 
predicts that the ratio of the weights of the contributions (i.e. the area under the 
separate peaks) to the distribution coming from two successive classes of clusters %',, 
and %',,+, should be equal to u-the non-branching probability. In the low-temperature 
regime, where the peaks are well separated, the validity of our analysis is of course 
readily checked (see figure 3). Closer to the phase boundary, however, the individual 
peaks have spread to such an extent that their superposition produces a smooth 
envelope as shown in figure 2, totally obscuring their separate contributions. The 
power of our analysis is further demonstrated when considering an intermediate- 
temperature distribution at t = 0.75 where the separate peaks are already evident but 
still have significant overlap so as to produce what seems at first sight to be a non-trivial 
background. Figure 5 shows the calculated distribution as well as a prediction obtained 
by first fitting a single Euler beta distribution to the first peak in the regime p 2 t = 0.75 
where there is no mixing with other contributions, and then generating scaled copies 
of this distribution having cutoffs and relative weights given by our analysis and finally 
summing these contributions. In spite of the simple choice of basic fitting function 
we find highly satisfactory agreement with the observed distribution showing that our 
'first-order' analysis indeed captures most of the large-scale features. The analysis can 
of course be extended by considering specific subclasses of the %',, in order to explain 
more details of the fine structure evident within the peaks in the low-temperature 
distributions. Finally in figure 6 we present the average magnetisation m as a function 
of the thermal parameter, as calculated from the distributions, showing a smooth 
monotonic behaviour. Our results indicate that the n delta function approximations 
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Figure 5. ( a )  Calculated distribution at t = 0.75. ( b )  Predicted distribution from identical 
but scaled contributions from the classes of clusters qn, n = 1,. . . , 10. 
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Figure 6. Average magnetisation  TI as a function of t = tanh(pJ). 

as discussed by Young (1976)-although probably able to reproduce the average 
magnetisation quite accurately-dramatically fail to describe the morphology of the 
actual distributions. 
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